Министерство науки и высшего образования Российской Федерации Нижнетагильский государственный социально-педагогический институт (филиал) федерального государственного автономного образовательного учреждения высшего образования

«Российский государственный профессионально-педагогический университет»

Факультет естествознания, математики и информатики Кафедра информационных технологий

УT	ВЕРЖДА	УЮ
Зам	и. директо	ора по УМР
		Л.П. Филатова
‹ ‹	>>	2019

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ **Б1.В.01.ДВ.06.02 АРХИТЕКТУРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ**

 Уровень высшего образования
 Бакалавриат

 Направление подготовки
 09.03.03 Прикладная информатика

 Профиль подготовки
 Прикладная информатика в управлении IT-проектами

 Форма обучения
 Очная, заочная

Рабочая программа дисциплины «Архитектура вычислительных систем». Нижний Тагил: Нижнетагильский государственный социально-педагогический институт (филиал) $\Phi \Gamma AOV$ ВО «Российский государственный профессионально-педагогический университет», 2019.-22 с.

Настоящая рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.03.03 Прикладная информатика.

Автор: к.п.н., старший преподаватель

Д. Ф. Терегулов

кафедры информационных технологий

Рецензент: к.п.н., зам директора по ИТ НТ МУП

Д. В. Виноградов

«Нижнетагильские тепловые сети»

Одобрена на заседании кафедры информационных технологий 16 мая 2019 г., протокол № 9.

Заведующая кафедрой

М. В. Мащенко

Рекомендована к печати методической комиссией факультета естествознания, математики и информатики 21 июня 2019 г., протокол № 10.

Председатель методической комиссии ФЕМИ

В.А. Гордеева

Декан ФЕМИ

Т. В. Жуйкова

Главный специалист ОИР

О. В. Левинских

[©] Нижнетагильский государственный социальнопедагогический институт (филиал) ФГАОУ ВО «Российский государственный профессионально-педагогический университет», 2019. © Терегулов Денис Федорович, 2019.

СОДЕРЖАНИЕ

1. Цель и задачи освоения дисциплины	4
2. Место дисциплины в структуре образовательной программы	
3. Результаты освоения дисциплины	4
4. Структура и содержание дисциплины	5
4.1. Объем дисциплины и виды контактной и самостоятельной работы	5
4.2. Тематический план очной формы обучения	6
4.3. Тематический план заочной формы обучения	6
4.4. Содержание тем дисциплины	7
5. Образовательные технологии	9
6. Учебно-методическоеобеспечение	9
6.1. Планирование самостоятельной работы	9
6.2. Организация текущего контроля	14
6.3. Организация промежуточной аттестации	20
7. Учебно-методическое и информационное обеспечение	21
8. Материально-техническое обеспечение дисциплины	

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины — формирование целостной системы знаний и умений по основам архитектуры персонального компьютера.

Задачи:

- Показать основные направления развития современных архитектур вычислительных систем.
- Сформировать понятийный аппарат в сфере архитектуры современных вычислительных систем.
- Сформировать умения обслуживать аппаратное обеспечение для информационных и автоматизированных систем.
- Способствовать освоению настройки, эксплуатации и сопровождения аппаратной части информационных систем и сервисов.
- Показать место аппаратного обеспечения в организации ИТ-инфраструктуры и управлении информационной безопасностью.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Архитектура вычислительных систем» является частью учебного плана по направлению подготовки 09.03.03 Прикладная информатика. Дисциплина Б1.В.01.ДВ.06.02 «Архитектура вычислительных систем» включена в Блок Б1 «Дисциплины (модули)» и является составной частью раздела Б1.В.ДВ.06.02 «Часть, формируемая участниками образовательных отношений». Дисциплина реализуется на кафедре информационных технологий.

3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина направлена на формирование и развитие следующих компетенций: **ОПК-5, ПК-8**.

Код и наименование	Код и наименование индикатора достижения
профессиональной компетенции	профессиональной компетенции
ОПК-5. Способен инсталлировать программное и аппаратное обеспе-	ОПК-5.1. Знает основы системного администрирования, администрирования СУБД, современные стандарты ин-
чение для информационных и ав-	формационного взаимодействия систем.
томатизированных систем	ОПК-5.2. Умеет выполнять параметрическую настройку информационных и автоматизированных систем.
	ОПК-5.3. Обеспечивает инсталляцию программного и аппаратного обеспечения информационных и автоматизированных систем.
ПК-5. Способность настраивать, эксплуатировать и сопровождать информационные системы и сер-	ПК-5.1. Знает понятие, структуру и классификацию информационных систем.
висы.	ПК-5.2.Знает правила настройки информационных систем.
	ПК-5.3. Знает основную документацию для сопровождения ИС.
	ПК-5.4. Умеет настраивать и эксплуатировать информационные системы и сервисы.
	ПК-5.5. Планирует сопровождение информационных систем разного типа и разрабатывает необходимую докумен-
	тацию для этого процесса.

Код и наименование	Код и наименование индикатора достижения
профессиональной компетенции	профессиональной компетенции
ПК-8. Способность принимать участие в организации ИТ инфраструктуры и управлении информационной безопасностью.	ПК-8.1. Знает основы информационной безопасности при организации ИТ инфраструктуры. ПК-8.2. Знает основные возможности и правила для организации ИТ инфраструктуры предприятия. ПК-8.3.Умеет создать безопасную ИТ инфраструктуру предприятия.

Таким образом, обучающийся после освоения дисциплины будет

знать:

- логические и арифметические основы цифровой техники;
- основы построения цифровых схем и принцип действия основных узлов цифровых устройств;
 - правила техники безопасности при работе с электроприборами;
- принцип построения и функционирования микропроцессоров, микро ЭВМ, микропроцессорных комплектов и систем;
- приемы программирования микропроцессора на языке кодовых комбинаций на языке ассемблера;
 - приемы моделирования процессов и схем;
 - интерфейсы микропроцессорных систем;
 - -понятие и структуру информационной образовательной среды;

уметь:

- читать принципиальные схемы цифровых устройств и микропроцессорных систем, осуществлять контроль их работы и диагностику;
 - проводить анализ работы цифровых устройств;
- анализировать рынок программно-технических средств для решения профессиональных задач;
- проектировать, разрабатывать и сопровождать технические устройства и программные продукты с использованием цифровых устройств и микропроцессорных систем с учетом требований информационной безопасности;
- решать стандартные задачи профессиональной деятельности с использованием знаний по архитектуре ПК;

владеть:

- навыками работы с программными средствами и оборудованием профессионального назначения;
 - базовыми методами проектирования электронных устройств.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Объем дисциплины и виды контактной и самостоятельной работы

Общая трудоемкость дисциплины составляет 6 зач. ед. (216 часа), их распределение по видам работ представлено в таблице.

Распределение трудоемкости дисциплины по видам работ

Вид работы	Кол-во часов		
	ДО	030	
Общая трудоемкость дисциплины по учебному плану	216	216	
Контактная работа, в том числе:	74	20	
Лекции	28	8	

Вид работы	Кол-во	Кол-во часов		
	ДО	030		
Лабораторные работы	46	12		
Самостоятельная работа, в том числе:	142	192		
Изучение теоретического материала	50	70		
Выполнение практических заданий	50	70		
Самоподготовка к текущему контролю знаний	32	52		
Сдача зачета	12-	4		

4.2. Тематический план очной формы обучения

Наименование разделов и тем дис-	Всего	Контака	тная работа	Сам.	Формы текущего
циплины	часов	Лек-	Лаб. ра-	работа	контроля успевае-
циплины	Тасов	ции	боты	paoora	мости
		ции	ООТЫ		MOCIN
Тема 1. Аппаратурный и программ-	14	2	2	10	отчет по лаб. р-те,
ный способы обработки информа-					тест
ции. Принципы фон Неймана и					
классическая архитектура компью-					
тера.					
Тема 2. История и перспективы раз-	12	2	-	10	отчет по лаб. р-те,
вития вычислительной техники.					тест
Классификация компьютеров.					
Тема 3. Арифметические основы	26	4	2	20	отчет по лаб. р-те,
ЭВМ. Представление информации в					тест
памяти компьютера.					
Тема 4. Элементарные логические	26	4	2	20	отчет по лаб. р-те,
функции и логические элементы.					тест
Тема 5. Принцип аналого-цифрового	20	2	8	10	отчет по лаб. р-те,
и цифро-аналогового преобразова-					тест
ния сигналов.					
Тема 6. Структура ПК, внутрима-	18	4	4	10	отчет по лаб. р-те,
шинный интерфейс.					тест
Тема 7. Функциональные характери-	14	2	2	10	отчет по лаб. р-те,
стики ПК. Элементы конструкции					тест
системного блока.					
Тема 8. Классификация и характери-	14	2	2	10	отчет по лаб. р-те,
стики полупроводниковых ЗУ.					тест
Тема 9. Архитектура простейшего	20	2	8	10	отчет по лаб. р-те,
МП: функции, структурная схема,					тест
программная модель, форматы дан-					
ных и команд, способы адресации.					
Тема 10. Программная модель мик-	20	2	8	10	отчет по лаб. р-те,
ропроцессорной системы					тест
Тема 11. Микропроцессоры типа	20	2	8	10	отчет по лаб. р-те,
CISC, RISC, VLIM					тест
Подготовка и сдача зачета с оценкой	12	-		12	
Итого	216	28	46	142	

4.3. Тематический план заочной формы обучения

Наименование разделов и тем дис-	Всего Контактная работа		Сам.	Формы текущего	
циплины	часов	Лек-	Лаб. ра-	работа	контроля успевае-
		ции	боты		мости
Тема 1. Аппаратурный и программ-	12	0	0	12	отчет по лаб. р-те,
ный способы обработки информа-					тест

Наименование разделов и тем дис- циплины	Всего часов	Контакт Лек- ции	ная работа Лаб. ра- боты	Сам. работа	Формы текущего контроля успевае- мости
ции. Принципы фон Неймана и классическая архитектура компьютера.					
Тема 2. История и перспективы развития вычислительной техники. Классификация компьютеров.	12	0	0	12	отчет по лаб. p-те, тест
Тема 3. Арифметические основы ЭВМ. Представление информации в памяти компьютера.	29	2	2	25	отчет по лаб. p-те, тест
Тема 4. Элементарные логические функции и логические элементы.	27	0	2	25	отчет по лаб. p-те, тест
Тема 5. Принцип аналого-цифрового и цифро-аналогового преобразования сигналов.	17	2	0	15	отчет по лаб. p-те, тест
Тема 6. Структура ПК, внутрима- шинный интерфейс.	21	2	4	15	отчет по лаб. p-те, тест
Тема 7. Функциональные характеристики ПК. Элементы конструкции системного блока.	24	2	2	20	отчет по лаб. p-те, тест
Тема 8. Классификация и характеристики полупроводниковых 3У.	22	0	2	20	отчет по лаб. p-те, тест
Тема 9. Архитектура простейшего МП: функции, структурная схема, программная модель, форматы данных и команд, способы адресации.	15	0	0	15	отчет по лаб. р-те, тест
Тема 10. Программная модель микропроцессорной системы	15	0	0	15	отчет по лаб. p-те, тест
Тема 11. Микропроцессоры типа CISC, RISC, VLIM	18	0	0	18	отчет по лаб. р-те, тест
Подготовка и сдача зачета с оценкой Итого	4 216	- 8	12	4 196	

4.4. Содержание тем дисциплины

Тема 1. Аппаратурный и программный способы обработки информации. Принципы фон Неймана и классическая архитектура компьютера.

Определение понятий вычислительная машина, вычислительная система, архитектура компьютера. Аппаратурный и программный способы обработки информации. Функциональная организация фон-неймановской ЭВМ.

Лабораторная работа 1. Сравнительная характеристика поколений компьютера.

Тема 2. История и перспективы развития вычислительной техники. Класси- фикация компьютеров.

Типы структур вычислительных машин и систем. Перспективы совершенствования вычислительных машин и систем: введение в микроэлектронику; экспоненциальный характер прогресса микроэлектроники; тенденции развития СБИС; перспективы исследований в области архитектуры. Особенности ЭВМ различных поколений: история, тенденции развития, классификация компьютеров.

Тема 3. Арифметические основы ЭВМ. Представление информации в памяти компьютера.

Арифметические основы ВС. Представление данных в ВС на машинном уровне. Кодирование информации: кодирование текстовой информации; кодирование графической информации; кодирование звуковой информации.

Лабораторная работа 2. Арифметические основы ЭВМ.

Тема 4. Элементарные логические функции и логические элементы.

Цифровая логика и цифровые системы; классификация цифровых устройств; элементарные ЛФ и ЛЭ; триггеры в интегральном исполнении; обзор основных узлов цифровых систем

Лабораторная работа 3. Логические основы ЭВМ.

Тема 5. Принцип аналого-цифрового и цифро-аналогового преобразования сигналов.

Аналого-цифровые и цифро-аналоговые преобразователи.

Лабораторная работа 4. Создание счетчика нажатий на сдвиговом регистре.

Лабораторная работа 5. Обслуживание компьютера.

Лабораторная работа 6. Управление семисегементным индикатором.

Лабораторная работа 7. Использование триггера Шмитта для устранения дребезга контактов.

Тема 6. Структура ПК, внутримашинный интерфейс.

Структура компьютера. Процессор. Основной алгоритм работы процессора. Структура памяти: основная память; внешняя память (магнитная, оптическая память); взаимодействие процессора и памяти. Внутримашинный, системный и периферийные интерфейсы. Устройства ввода-вывода информации: видеосистема, клавиатура, принтеры, сканеры, манипуляторы. Системная плата. Функциональные характеристики персонального компьютера.

Классификация вычислительных систем. Архитектура вычислительных систем. Типовые структуры BC (однопроцессорные, многопроцессорные). Кластеры. Организация функционирования BC.

Пабораторная работа 8. Архитектура и программирование микропроцессора Пабораторная работа 9.Получение и обработка информации с датчиков

Тема 7. Функциональные характеристики ПК. Элементы конструкции системного блока.

Понятие архитектуры микропроцессора. Функциональная схема МП. Основные функции и характеристики МП. Операционный блок МП. АЛУ. Регистры операционного блока. Управляющий блок МП. Регистры управляющего блока. Обобщенная структурная схема МП. Микропроцессоры типа CISC. Микропроцессоры типа RISC. Микропроцессоры типа VLIM. Однокристальные микро-ЭВМ.

Лабораторная работа 10. Проектирование элементов системы «Умный дом».

Тема 8. Классификация и характеристики полупроводниковых ЗУ.

Обработка текста на ЭВМ. Работа со звуком на ЭВМ. Работа с графикой и анимацией. Обработка смысловой информации.

Лабораторная работа 11 Моделирование работы ОЗУ.

Тема 9. Архитектура простейшего МП: функции, структурная схема, программная модель, форматы данных и команд, способы адресации.

Лабораторная работа 12. Программно-аппаратная организация портов ПК. Представление звуковых и графических данных в памяти ЭВМ.

Тема 10. Программная модель микропроцессорной системы.

Лабораторная работа 13. Проектирование и создание электронных часов на микропроцессоре

Лабораторная работа 14. Представление звуковых и графических данных в памяти ЭВМ.

Тема 11. Микропроцессоры типа CISC, RISC, VLIM.

Лабораторная работа 15. Знакомство со служебным ПО.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Процесс обучения по дисциплине «Архитектура вычислительных систем» целесообразно построить с использованием традиционного подхода, при котором в ходе лекций раскрываются наиболее общие вопросы, формируются основы теоретических знаний по дисциплине, а на практических занятиях ведется работа по усвоению практических умений и навыков ведения учебной работы по информатике. Лекционные занятия должны стимулировать познавательную ативность студентов, поэтому в ходе лекций необходимо обращение к примерам, взятым из практики, включение проблемных вопросов и ситуаций:

- лекции с использованием презентаций;
- лекции с элементами беседы;
- интерактивные лекции с использованием мультимедийных средств;

Для формирования предусмотренных программой компетенций в ходе практических занятий необходимо использовать следующие технологии:

- работа в малых группах;
- информационные технологии: интерактивное взаимодействие посредством дистанционной среды, электронные учебники, электронная почта, образовательные сайты;
- игровое моделирование, благодаря которому студенты имеют возможность «проигрывать» ситуации своей будущей профессиональной деятельности;
 - проектная деятельность (разработка проекта).
- В процессе освоения дисциплины предусмотрено интерактивное (диалоговое и дискуссионное) построение практических занятий:
- анализ и оценка практического опыта ведения занятий учителями и педагогами дополнительного образования;
 - обсуждение, анализ и оценка выступлений студентов;
 - защита выполненных разработок;
- кейс-метод обсуждение, анализ и оценка представленных разработок (проектов).

6. УЧЕБНО-МЕТОДИЧЕСКОЕОБЕСПЕЧЕНИЕ

6.1. Планирование самостоятельной работы

Самостоятельная работа студентов заключается в изучении и анализе литературы; электронных учебников и источников Internet, необходимых для выполнения самостоятельных заданий. Помимо этого студентам необходима отработка навыковработы с изучаемыми программнымипродуктами для выполнения индивидуальных заданий на компьютере, выполнению индивидуальных проектов. Демонстрация творческих работ на занятиях и защита проектов на зачете обеспечивают систематичность промежуточной аттестации студентов, организуют их самостоятельную работу и активизируют творческиеспособности.

Самостоятельная работа студентов предполагает:

- разработку и составление глоссария или тезауруса, отражающих все основные понятия тем курса «Сложные логические элементы»; «Триггеры», «Регистры», «Микропроцессор»;
- самостоятельное изучение тех тем учебной программы, которые с содержательной точки зрения могут быть освоены студентом самостоятельно и которые имеют высокий уровень учебно-методического оснащения.

Планирование самостоятельной работы

Темы занятий	Содержание самостоятельной работы	Формы контроля СРС
T 1	П	0
Тема 1.	Проработка материалов лекции. Выполне-	Отчет по лабораторной работе,
	ние домашней работы	тест
Тема 2.	Проработка материалов лекции. Выполне-	Отчет по лабораторной работе,
	ние домашней работы	тест
Тема 3.	Проработка материалов лекции. Выполне-	Отчет по лабораторной работе,
	ние домашней работы	тест
Тема 4.	Проработка материалов лекции. Выполне-	Отчет по лабораторной работе,
	ние домашней работы	тест
Тема 5.	Проработка материалов лекции. Выполне-	Отчет по лабораторной работе,
	ние домашней работы	тест
Тема 6.	Проработка материалов лекции. Выполне-	Отчет по лабораторной работе,
	ние домашней работы	тест
Тема 7.	Проработка материалов лекции. Выполне-	Отчет по лабораторной работе,
	ние домашней работы	тест
Тема 8.	Проработка материалов лекции. Выполне-	Отчет по лабораторной работе,
	ние домашней работы	тест
Тема 9.	Проработка материалов лекции. Выполне-	Отчет по лабораторной работе,
	ние домашней работы	тест
Тема 10	Проработка материалов лекции. Выполне-	Отчет по лабораторной работе,
	ние домашней работы	тест
Тема 11	Проработка материалов лекции. Выполне-	Отчет по лабораторной работе,
	ние домашней работы	тест

Задания для организации самостоятельной работы

Список тем для подготовки докладов и мультимедийных презентаций:

- 1. Цифровой и аналоговый сигнал. Применение в науке и технике.
- 3. Сложные логические элементы. Обозначения, функции, временные диаграммы
- 5. Мультиплексоры, демультиплексоры. Обозначения, функции. Области применения (примеры)
 - 6. Компараторы кодов. Обозначения, функции. Области применения (примеры)
 - 7. Счетчики. Обозначения, функции. Области применения (примеры)
 - 8. Сумматоры. Обозначения, функции. Области применения (примеры)
- 9. Одновибраторы, генераторы. Обозначения, функции. Области применения (примеры)
- 10. Триггеры. Виды, обозначения, функции. Применение в вычислительной технике
 - 11. Регистры. Виды, обозначения, функции. Применение в вычислительной технике
- 12. Микропроцессор. Виды, обозначения, функции. Применение в вычислительной технике.

Задания и методические указания по организации и проведению лабораторных работ

Лабораторная работа 1. Сравнительная характеристика поколений компьютера. Задание: изучить основные характеристики поколений компьютера. Провести анализ.

Литература для подготовки:

1. Харрис Д., Харрис С. Цифровая схемотехника и архитектура компьютера. 2-е изд. Morgan Kaufman, 2013. URL: http://easyelectronics.ru/files/Book/digital-design-and-computer-architecture-russian-translation.pdf

- 2. Таненбаум Э., Остин Т. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. URL: http://ibooks.ru/reading.php?productid=21890.
- 3. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.

Лабораторная работа 2. Арифметические основы ЭВМ.

Задание: построить электрические модели основных логических элементов Литература для подготовки:

- 1. Харрис Д., Харрис С. Цифровая схемотехника и архитектура компьютера. 2-е изд. Morgan Kaufman, 2013. URL: http://http://easyelectronics.ru/files/Book/digital-design-and-computer-architecture-russian-translation.pdf
- 2. Таненбаум Э., Остин Т. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. URL: http://ibooks.ru/reading.php?productid=21890.
- 3. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.

Лабораторная работа 3. Логические основы ЭВМ.

Задание: построить электрические модели основных логических элементов в пакете «Начала электроники».

Литература для подготовки:

- 1. Харрис Д., Харрис С. Цифровая схемотехника и архитектура компьютера. 2-е изд. Morgan Kaufman, 2013. URL: http://http://easyelectronics.ru/files/Book/digital-design-and-computer-architecture-russian-translation.pdf
- 2. Таненбаум Э., Остин Т. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. URL: http://ibooks.ru/reading.php?productid=21890.
- 3. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.

Лабораторная работа 4. Создание счетчика нажатий на сдвиговом регистре.

Задание: изучить устройство, назначение, принцип работы регистров. С помощью конструктора построить схему счетчика нажатий на сдвиговом регистре.

Литература для подготовки:

- 1. Бачинин А., Панкратов В., Накоряков В. Основы программирования микроконтроллеров. М.: ООО «Амперка», 2013. 207 с.
- 2. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.
- 3. INTUIT.ru: Учебный курс Введение в цифровую схемотехнику[Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/104/104/info/.
 - 4. Токхейм Р. Основы цифровой электроники. М.: Мир, 1988.

Лабораторная работа 5. Обслуживание компьютера

Задание: изучить устройство системного блока. Провести его техническое обслуживание.

Литература для подготовки:

- 1. Харрис Д., Харрис С. Цифровая схемотехника и архитектура компьютера. 2-е изд. Morgan Kaufman, 2013. URL: http://http://easyelectronics.ru/files/Book/digital-design-and-computer-architecture-russian-translation.pdf
- 2. Таненбаум Э., Остин Т. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. URL: http://ibooks.ru/reading.php?productid=21890.
- 3. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.

- 4. INTUIT.ru: Учебный курс Введение в цифровую схемотехнику[Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/104/104/info/.
 - 5. Токхейм Р. Основы цифровой электроники. М.: Мир, 1988.

Лабораторная работа 6. Управление семисегементным индикатором

Задание: изучить устройство семисегментного индикатора. С помощью конструктора построить схему управления индикатором.

Литература для подготовки:

- 1. INTUIT.ru: Учебный курс Введение в цифровую схемотехнику[Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/104/104/info/.
 - 2. Токхейм Р. Основы цифровой электроники. М.: Мир, 1988.

Лабораторная работа 7. Использование триггера Шмитта для устранения дребезга контактов

Задание: Схемы и расчеттриггера Шмитта. Явление гистерезиса, пороги срабатывания. С помощью конструктора построить схему устранения дребезга контактов.

Литература для подготовки:

- 1. INTUIT.ru: Учебный курс Введение в цифровую схемотехнику[Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/104/104/info/.
 - 2. Токхейм Р. Основы цифровой электроники. М.: Мир, 1988.

Лабораторная работа 8. Архитектура и программирование микропроцессора

Задание: изучить аппаратную организацию и логическую структуру микропроцессора, регистры, управляющие схемы, арифметико-логические устройства, запоминающие устройства и связывающие их информационные магистрали.

- 1. Харрис Д., Харрис С. Цифровая схемотехника и архитектура компьютера. 2-е изд. Morgan Kaufman, 2013. URL: http://http://easyelectronics.ru/files/Book/digital-design-and-computer-architecture-russian-translation.pdf
- 2. Таненбаум Э., Остин Т. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. URL: http://ibooks.ru/reading.php?productid=21890.
- 3. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.

Лабораторная работа 9. Получение и обработка информации с датчиков

Задание: изучить устройство основных типов датчиков. С помощью конструктора построить схему с использованием датчиков.

Литература для подготовки:

- 1. Бачинин А., Панкратов В., Накоряков В. Основы программирования микро-контроллеров. М.: ООО «Амперка», 2013. 207 с.
- 2. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.
- 3. INTUIT.ru: Учебный курс Введение в цифровую схемотехнику[Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/104/104/info/.
 - 4. Токхейм Р. Основы цифровой электроники. М.: Мир, 1988.

Лабораторная работа 10 Проектирование элементов системы «Умный дом»

Задание: изучить особенности построения системы «Умный дом». Спроектировать элементы системы.

Литература для подготовки:

1. Бачинин А., Панкратов В., Накоряков В. Основы программирования микроконтроллеров. М.: ООО «Амперка», 2013. 207 с.

- 2. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.
- 3. INTUIT.ru: Учебный курс Введение в цифровую схемотехнику[Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/104/104/info/.
 - 4. Токхейм Р. Основы цифровой электроники. М.: Мир, 1988.

Лабораторная работа 11. Моделирование работы ОЗУ.

Задание: изучить устройство триггеров. С помощью конструктора построить схему управления ОЗУ.

Литература для подготовки:

- 1. Бачинин А., Панкратов В., Накоряков В. Основы программирования микро-контроллеров. М.: ООО «Амперка», 2013. 207 с.
- 2. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.
- 3. INTUIT.ru: Учебный курс Введение в цифровую схемотехнику[Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/104/104/info/.
 - 4. Токхейм Р. Основы цифровой электроники. М.: Мир, 1988.

Лабораторная работа 12. Программно-аппаратная организация портов ПК

Задание: изучить программно-аппаратную организацию портов ПК. Проанализировать порты заданного ПК

Литература для подготовки:

- 1. Бачинин А., Панкратов В., Накоряков В. Основы программирования микроконтроллеров. М.: ООО «Амперка», 2013. 207 с.
- 2. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.
- 3. INTUIT.ru: Учебный курс Введение в цифровую схемотехнику[Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/104/104/info/.
 - 4. Токхейм Р. Основы цифровой электроники. М.: Мир, 1988.

Лабораторная работа 13. Проектирование и создание электронных часов на микропроцессоре

Лабораторная работа 14. Представление звуковых и графических данных в памяти ЭВМ.

Задание: спроектировать и создать электронные часы.

Литература для подготовки:

- 1. Бачинин А., Панкратов В., Накоряков В. Основы программирования микроконтроллеров. М.: ООО «Амперка», 2013. 207 с.
- 2. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.
- 3. INTUIT.ru: Учебный курс Введение в цифровую схемотехнику[Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/104/104/info/.
 - 4. Токхейм Р. Основы цифровой электроники. М.: Мир, 1988.

Лабораторная работа 15. Знакомство со служебным ПО.

Задание: изучить виды и назначение служебного ПО. Описать проведение технического обслуживания ПК с помощью служебного ПО различного назначения.

- 1. Харрис Д., Харрис С. Цифровая схемотехника и архитектура компьютера. 2-е изд. Morgan Kaufman, 2013. URL: http://http://easyelectronics.ru/files/Book/digital-design-and-computer-architecture-russian-translation.pdf
- 2. Таненбаум Э., Остин Т. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. URL: http://ibooks.ru/reading.php?productid=21890.

3. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.

Лабораторная работа 16. Архитектура и программирование микропроцессора Задание: создание ранее спроектированного устройства из электронных компонентов. Программирование микроконтроллера.

Литература для подготовки:

- 1. Бачинин А., Панкратов В., Накоряков В. Основы программирования микроконтроллеров. М.: ООО «Амперка», 2013. 207 с.
- 2. Кузин, А. В. Микропроцессорная техника: [учебник для сред. проф. образования] / А. В. Кузин, М. А. Жаворонков. [Электронный ресурс] М.: Академия, 2013. 304 с.
- 3. INTUIT.ru: Учебный курс Введение в цифровую схемотехнику[Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/104/104/info/.
 - 4. Токхейм Р. Основы цифровой электроники. М.: Мир, 1988.

6.2. Организация текущего контроля

Проверка качества усвоения знаний по дисциплине ведется в течение семестра в устной форме (интерактивная форма обучения во время лекционных и семинарских занятий) и в письменной (тестовые контрольные работы по укрупненным темам и письменные опросы на занятиях) форме. По результатам работы во время занятий студенты могут набрать определенное количество баллов и получить зачет автоматом.

Проверка качества усвоения знаний по дисциплине ведется в течение семестра в устной форме (интерактивная форма обучения во время лекционных и семинарских занятий) форме.

- заслушиваниедокладов на тему «Сравнение и оценка основных характеристик современных устройств для работы с цифровым и аналоговым сигналом»,
- взаимная проверка сравнительных и оценочных таблиц, схем и графов (разделы «Аппаратное обеспечение», «Сложные логические элементы»);
- проверка отчетов опытно-экспериментальных работ по темам «Управление электронными устройствами», «Пайка электронных компонентов»;
 - виртуальные выставки самостоятельных работ студентов.

Подобное разнообразие видов текущего контроля дает основания для объективной оценки уровня подготовки каждого студента.

Типовые задания	Основные показатели оценки результата
Устный опрос по теме:	Определены основные сферы применения элек-
Сферы применения электроники	троники, приведены наглядные практические при-
	меры
Практическое задание:	Определены критерии для сравнения основных
Сравнение и оценка основных характеристик	устройств работы с цифровым и аналоговым сиг-
современных устройств для работы с цифро-	налом. Представлена сравнительная таблица соот-
вым и аналоговым сигналом	ветствующих устройств.
Практическое задание:	Проведение опытной работы по определению ха-
Изучение и выделение принципов, лежащих	рактеристик преобразований сигнала.
в основе аналогово-цифрового и цифро-	
аналогового преобразования	
Практическое задание:	Сравнительно-оценочная таблица, тестирование
Изучение и оценка возможностей сложных	Практическое задание выполнено на достаточно
логических элементов, условные обозначе-	высоком уровне
ния, таблицы истинности, временные диа-	
граммы	
Практическое задание:	Практическое задание выполнено на достаточно
Пайка электронных компонентов	высоком уровне

Типовые задания	Основные показатели оценки результата		
Практическое задание:	Практическое задание выполнено на достаточно		
Проектирование электронных схем в пакете	высоком уровне, в ходе работы были максимально		
прикладных программ	задействованы инструменты редактора.		
Практическое задание:	Практическое задание выполнено на достаточно		
Проектирование печатной платы электрон-	высоком уровне		
ного устройства			

Примеры практических заданий


Примерные темы практических заданий

- 1. Построить электрические модели логических элементов (И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ) в пакете «Начала электроники»
- 2. Смоделировать и создать управление свечением RGB светодиода с помощью микроконтроллера Arduino.

Принципиальная схема

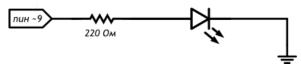
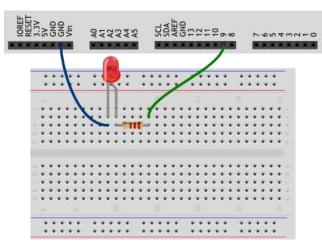


Схема на макетной плате



3. Осуществить управление скважностью (ШИМ) с помощью микроконтроллера Arduino.

Принципиальная схема

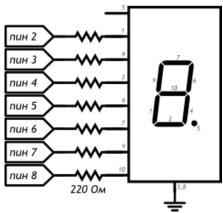
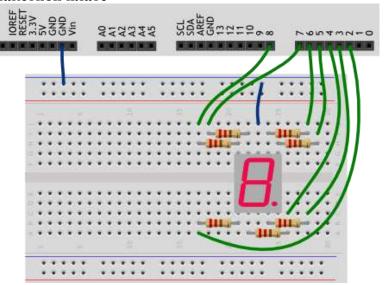
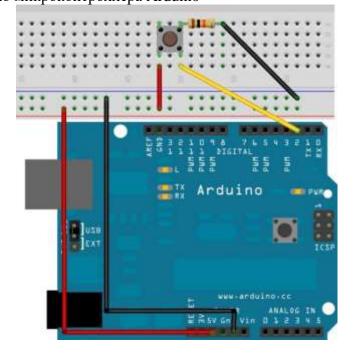
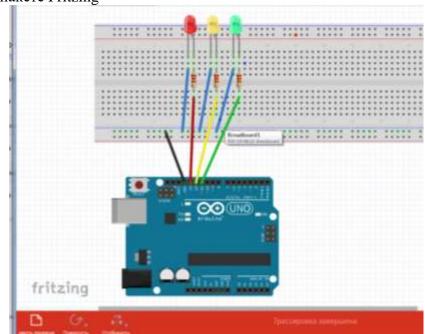


Схема на макетной плате

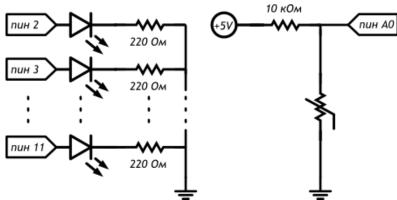


4. Осуществить управление семисегментным индикатором с помощью микроконтроллера Arduino: зажечь цифры от 0 до 9.

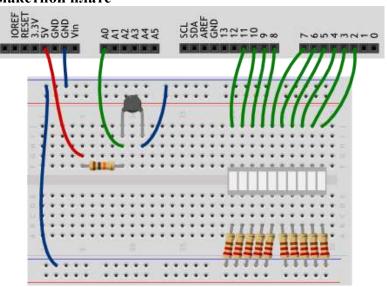

Принципиальная схема


Схема на макетной плате

5. Использование триггера Шмитта для устранения дребезга контактов с помощью микроконтроллера Arduino



6. смоделировать работу светофора с помощью микроконтроллера Arduino в пакете Fritzing



7. Получить данные и отобразить информацию с датчиков с помощью микроконтроллера Arduino

Принципиальная схема

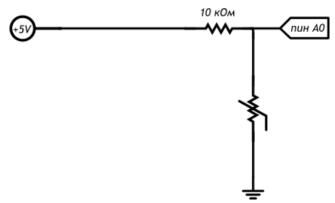
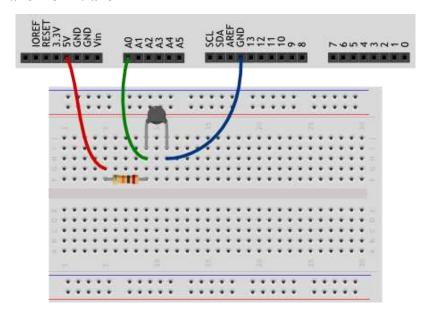


Схема на макетной плате



8. Спроектировать элемент системы «Умный дом» Метеостанция

Принципиальная схема

Схема на макетной плате

- 9. Моделирование работы ОЗУ в пакете прикладных программ Fritzing..
- 10. Создание счетчика нажатий на сдвиговом регистре с помощью микроконтроллера Arduino

Принципиальная схема

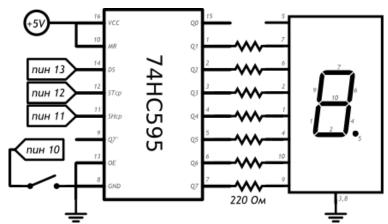
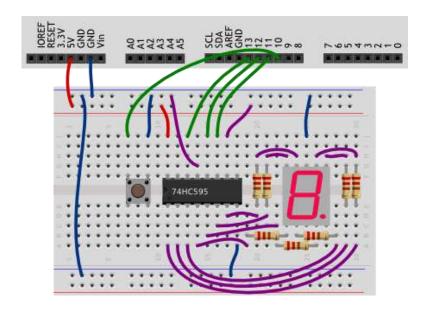
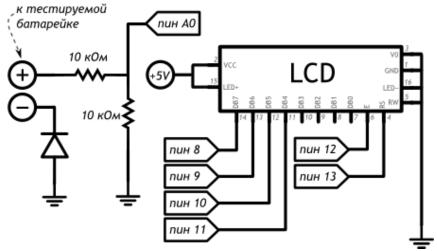
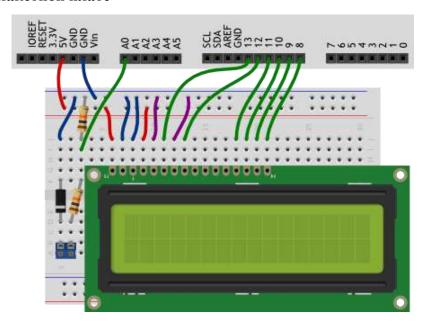




Схема на макетной плате



11. Спроектировать и сконструировать тестер батареек, управляемый с помощью микроконтроллера Arduino.

Принципиальная схема

Схема на макетной плате

Критерии оценивания устного ответа

- 5 баллов: ответ полный и правильный на основании изученных теорий; материал изложен в определенной логической последовательности, литературным языком: ответ самостоятельный.
- 4 балла: ответ полный и правильный на основании изученных теорий; материал изложен в определенной логической последовательности, при этом допущены две-три несущественные ошибки, исправленные по требованию преподавателя.
- 3 балла: (удовлетворительно): ответ полный, но при этом допущена существенная ошибка, или неполный, несвязный.
- 2 балла: при ответе обнаружено непонимание студентом основного содержания учебного материала или допущены существенные ошибки, которые студент не смог исправить при наводящих вопросах преподавателя.

Критерии оценивания практического задания

- 5 баллов работа выполнена полностью и правильно.
- 4 балла работа выполнена правильно с учетом 2-3 несущественных ошибок исправленных самостоятельно по требованию преподавателя.
- 3 балла работа выполнена правильно не менее чем на половину или допущена существенная ошибка.
- 2 балла допущены две (и более) существенные ошибки в ходе работы, которые студент не может исправить даже по требованию преподавателя.

6.3. Организация промежуточной аттестации

Промежуточная аттестация представляет собой форму контроля (оценки) освоения выпускниками программы «Архитектура вычислительных систем» в соответствии с требованиями, установленными к содержанию, структуре и условиям реализации программы.

Перечень обязательных видов работы студента по каждому из разделов, необходимых для получения зачета:

- посещение лекционных занятий;
- ответы на теоретические вопросы на лабораторных занятиях;
- решение практических задач на лабораторных занятиях, выполнение заданий для самостоятельной работы;
 - выполнение домашних работ.

Промежуточная аттестация по данной дисциплине проводится в форме зачета с оценкой.

Зачет имеет комплексный характер и состоит из двух частей: теоретической и практической. В теоретической части проверяется усвоение основных понятий и положений по предмету, в практической – умение применять полученные знания на практике в профессиональной деятельности.

Примерный перечень вопросов к зачету:

- 1. Аппаратурный и программный способы обработки информации.
- 2. Принципы фон Неймана и классическая архитектура компьютера.
- 3. История и перспективы развития вычислительной техники.
- 4. Классификация компьютеров
- 5. Свойства цифрового и аналогового сигнала.
- 6. Арифметические основы ЭВМ.
- 1. Представление информации в памяти компьютера
- 2. Среда распространения сигнала. Характеристики. Способы передачи.
- 3. Уровни представления цифровых устройств
- 4. Функции цифровых устройств
- 5. Включение цифрового устройства, ЦАП и АЦП

- 6. Элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ. Обозначения, таблицы истинности, временные диаграммы,
 - 7. Элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ применение
 - 8. Элементы Исключающее ИЛИ
- 9. Сложные логические элементы. Состав, функции, таблицы истинности. Временные диаграммы
 - 10. Комбинационные микросхемы
 - 11. Шифраторы, дешифраторы. Функции, обозначение, применение
 - 12. Позиционная индикация на дешифраторе с выходами ОК
- 13. Коммутация сигналов в заданном порядке. Мультиплексирование и демультиплексирование
 - 14. Структура ПК, внутримашинный интерфейс.
 - 15. Функциональные характеристики ПК.
 - 16. Элементы конструкции системного блока

Практическое задание к зачету основано на пройденных лабораторных работах.

Критерии оценивания устного ответа

- 5 баллов: ответ полный и правильный на основании изученных теорий; материал изложен в определенной логической последовательности, литературным языком: ответ самостоятельный.
- 4 балла: ответ полный и правильный на основании изученных теорий; материал изложен в определенной логической последовательности, при этом допущены две-три несущественные ошибки, исправленные по требованию преподавателя.
- 3 балла: (удовлетворительно): ответ полный, но при этом допущена существенная ошибка, или неполный, несвязный.
- 2 балла: при ответе обнаружено непонимание студентом основного содержания учебного материала или допущены существенные ошибки, которые студент не смог исправить при наводящих вопросах преподавателя.

Критерии оценивания практического задания

- 5 баллов работа выполнена полностью и правильно.
- 4 балла работа выполнена правильно с учетом 2-3 несущественных ошибок исправленных самостоятельно по требованию преподавателя.
- 3 балла работа выполнена правильно не менее чем на половину или допущена существенная ошибка.
- 2 балла допущены две (и более) существенные ошибки в ходе работы, которые студент не может исправить даже по требованию преподавателя.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Основная литература

- 1. Заславская, О. Ю. Архитектура компьютера : лекции, лабораторные работы, комментарии к выполнению. Учебно-методическое пособие / О. Ю. Заславская. Москва : Московский городской педагогический университет, 2013. 148 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/26450.html (дата обращения: 17.03.2019). Режим доступа: для авторизир. пользователей.
- 2. Таненбаум Э, Остин Т. Архитектура компьютера. 6-е изд. СПб.: Питер, 2018. URL: http://ibooks.ru/reading.php?productid=21890 (дата обращения: 17.03.2019). Режим доступа: для авторизир. пользователей.

Дополнительная литература

3. Болдырихин, О. В. Архитектура и логика функционирования ЭВМ. Работа с принципиальными электрическими схемами : методические указания к практическим работам по дисциплинам "Организация ЭВМ" и "Архитектура вычислительных систем" / О.

- В. Болдырихин. Липецк : Липецкий государственный технический университет, ЭБС АСВ, 2011. 32 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/17721.html (дата обращения: 17.03.2019). Режим доступа: для авторизир. пользователей.
- 4. Довгий, П. С. Прикладная архитектура базовой модели процессора Intel: учебное пособие по дисциплине «Организация ЭВМ и систем» / П. С. Довгий, В. И. Поляков. Санкт-Петербург: Университет ИТМО, 2012. 114 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/67574.html (дата обращения: 17.03.2019). Режим доступа: для авторизир. пользователей.
- 5. Карягин, А. П. Архитектура микропроцессоров и их программирование : методические указания к лабораторным и самостоятельным работам / А. П. Карягин. Оренбург : Оренбургский государственный университет, ЭБС АСВ, 2004. 56 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/50034.html (дата обращения: 17.03.2019). Режим доступа: для авторизир. пользователей

Информационные сетевые ресурсы

- 1. INTUIT.ru: Учебный курс Введение в цифровую схемотехнику[Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/104/104/info/.
- 2. INTUIT.ru: Учебный курс Периферийные устройства вычислительной техники [Электронный ресурс]. URL: http://www.intuit.ru/studies/courses/3460/702/info/.
- 3. Библиотека полнотекстовых учебников и учебных пособий по гуманитарноэкономическим и техническим дисциплинам [Электронный ресурс]. Режим доступа: http://window.edu.ru/window/library. — Загл. с экрана.
- 4. eLIBRARY Научная электронная библиотека [Электронный ресурс]. URL: http://elibrary.ru/
- 5. Федеральный портал «Российское образование» [Электронный ресурс]. URL: http://www.edu.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебная аудитория 201Aa: 10 рабочих мест для студентов, маркерная доска, 11 компьютеров, набор роботов, набор учебных конструкторов для сборки роботов, паяльные станции (10 шт.)

Программное обеспечение.

- Пакет офисных программ: Office Standard 2016 Russian OLP NL Academic Edition.
 Акт предоставления прав № IT021617 от 12.02.2016 г.
 Свободное ПО:
- Начала электроники
- Fritzing
- ArduinoIDE